Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3988, 2022 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-35810158

RESUMO

Biomolecular condensation constitutes an emerging mechanism for transcriptional regulation. Recent studies suggest that the co-condensation between transcription factors (TFs) and DNA can generate mechanical forces driving genome rearrangements. However, the reported forces generated by protein-DNA co-condensation are typically below one piconewton (pN), questioning its physiological significance. Moreover, the force-generating capacity of these condensates in the chromatin context remains unknown. Here, we show that Sox2, a nucleosome-binding pioneer TF, forms co-condensates with DNA and generates forces up to 7 pN, exerting considerable mechanical tension on DNA strands. We find that the disordered domains of Sox2 are required for maximum force generation but not for condensate formation. Furthermore, we show that nucleosomes dramatically attenuate the mechanical stress exerted by Sox2 by sequestering it from coalescing on bare DNA. Our findings reveal that TF-mediated DNA condensation can exert significant mechanical stress on the genome which can nonetheless be attenuated by the chromatin architecture.


Assuntos
Cromatina , Nucleossomos , Cromatina/genética , DNA/genética , Regulação da Expressão Gênica , Nucleossomos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Nat Struct Mol Biol ; 29(5): 463-471, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35484234

RESUMO

The H1 linker histone family is the most abundant group of eukaryotic chromatin-binding proteins. However, their contribution to chromosome structure and function remains incompletely understood. Here we use single-molecule fluorescence and force microscopy to directly visualize the behavior of H1 on various nucleic acid and nucleosome substrates. We observe that H1 coalesces around single-stranded DNA generated from tension-induced DNA duplex melting. Using a droplet fusion assay controlled by optical tweezers, we find that single-stranded nucleic acids mediate the formation of gel-like H1 droplets, whereas H1-double-stranded DNA and H1-nucleosome droplets are more liquid-like. Molecular dynamics simulations reveal that multivalent and transient engagement of H1 with unpaired DNA strands drives their enhanced phase separation. Using eGFP-tagged H1, we demonstrate that inducing single-stranded DNA accumulation in cells causes an increase in H1 puncta that are able to fuse. We further show that H1 and Replication Protein A occupy separate nuclear regions, but that H1 colocalizes with the replication factor Proliferating Cell Nuclear Antigen, particularly after DNA damage. Overall, our results provide a refined perspective on the diverse roles of H1 in genome organization and maintenance, and indicate its involvement at stalled replication forks.


Assuntos
Histonas , Nucleossomos , Cromatina , DNA/metabolismo , DNA de Cadeia Simples , Histonas/metabolismo , Ligação Proteica
3.
Nature ; 589(7841): 293-298, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33299182

RESUMO

H1 linker histones are the most abundant chromatin-binding proteins1. In vitro studies indicate that their association with chromatin determines nucleosome spacing and enables arrays of nucleosomes to fold into more compact chromatin structures. However, the in vivo roles of H1 are poorly understood2. Here we show that the local density of H1 controls the balance of repressive and active chromatin domains by promoting genomic compaction. We generated a conditional triple-H1-knockout mouse strain and depleted H1 in haematopoietic cells. H1 depletion in T cells leads to de-repression of T cell activation genes, a process that mimics normal T cell activation. Comparison of chromatin structure in normal and H1-depleted CD8+ T cells reveals that H1-mediated chromatin compaction occurs primarily in regions of the genome containing higher than average levels of H1: the chromosome conformation capture (Hi-C) B compartment and regions of the Hi-C A compartment marked by PRC2. Reduction of H1 stoichiometry leads to decreased H3K27 methylation, increased H3K36 methylation, B-to-A-compartment shifting and an increase in interaction frequency between compartments. In vitro, H1 promotes PRC2-mediated H3K27 methylation and inhibits NSD2-mediated H3K36 methylation. Mechanistically, H1 mediates these opposite effects by promoting physical compaction of the chromatin substrate. Our results establish H1 as a critical regulator of gene silencing through localized control of chromatin compaction, 3D genome organization and the epigenetic landscape.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/genética , Epigênese Genética , Histonas/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/genética , Cromatina/química , Cromatina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Inativação Gênica , Histonas/química , Ativação Linfocitária/genética , Masculino , Metilação , Camundongos , Camundongos Knockout
4.
Nature ; 589(7841): 299-305, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33299181

RESUMO

Linker histone H1 proteins bind to nucleosomes and facilitate chromatin compaction1, although their biological functions are poorly understood. Mutations in the genes that encode H1 isoforms B-E (H1B, H1C, H1D and H1E; also known as H1-5, H1-2, H1-3 and H1-4, respectively) are highly recurrent in B cell lymphomas, but the pathogenic relevance of these mutations to cancer and the mechanisms that are involved are unknown. Here we show that lymphoma-associated H1 alleles are genetic driver mutations in lymphomas. Disruption of H1 function results in a profound architectural remodelling of the genome, which is characterized by large-scale yet focal shifts of chromatin from a compacted to a relaxed state. This decompaction drives distinct changes in epigenetic states, primarily owing to a gain of histone H3 dimethylation at lysine 36 (H3K36me2) and/or loss of repressive H3 trimethylation at lysine 27 (H3K27me3). These changes unlock the expression of stem cell genes that are normally silenced during early development. In mice, loss of H1c and H1e (also known as H1f2 and H1f4, respectively) conferred germinal centre B cells with enhanced fitness and self-renewal properties, ultimately leading to aggressive lymphomas with an increased repopulating potential. Collectively, our data indicate that H1 proteins are normally required to sequester early developmental genes into architecturally inaccessible genomic compartments. We also establish H1 as a bona fide tumour suppressor and show that mutations in H1 drive malignant transformation primarily through three-dimensional genome reorganization, which leads to epigenetic reprogramming and derepression of developmentally silenced genes.


Assuntos
Transformação Celular Neoplásica/genética , Cromatina/química , Cromatina/genética , Histonas/deficiência , Histonas/genética , Linfoma/genética , Linfoma/patologia , Alelos , Animais , Linfócitos B/metabolismo , Linfócitos B/patologia , Autorrenovação Celular , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Genes Supressores de Tumor , Centro Germinativo/patologia , Histonas/metabolismo , Humanos , Linfoma/metabolismo , Camundongos , Mutação , Células-Tronco/metabolismo , Células-Tronco/patologia
5.
Nat Commun ; 11(1): 3241, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591537

RESUMO

Protein arginine deiminase 4 (PAD4) facilitates the post-translational citrullination of the core histones H3 and H4. While the precise epigenetic function of this modification has not been resolved, it has been shown to associate with general chromatin decompaction and compete with arginine methylation. Recently, we found that histones are subjected to methylglyoxal (MGO)-induced glycation on nucleophilic side chains, particularly arginines, under metabolic stress conditions. These non-enzymatic adducts change chromatin architecture and the epigenetic landscape by competing with enzymatic modifications, as well as changing the overall biophysical properties of the fiber. Here, we report that PAD4 antagonizes histone MGO-glycation by protecting the reactive arginine sites, as well as by converting already-glycated arginine residues into citrulline. Moreover, we show that similar to the deglycase DJ-1, PAD4 is overexpressed and histone citrullination is upregulated in breast cancer tumors, suggesting an additional mechanistic link to PAD4's oncogenic properties.


Assuntos
Histonas/metabolismo , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Aldeído Pirúvico/farmacologia , Animais , Arginina/metabolismo , Neoplasias da Mama/enzimologia , Citrulinação , Citrulina/metabolismo , Feminino , Glicosilação , Humanos , Células MCF-7 , Metilação , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Nucleossomos/metabolismo
6.
Nat Commun ; 10(1): 1289, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894531

RESUMO

Cellular proteins continuously undergo non-enzymatic covalent modifications (NECMs) that accumulate under normal physiological conditions and are stimulated by changes in the cellular microenvironment. Glycation, the hallmark of diabetes, is a prevalent NECM associated with an array of pathologies. Histone proteins are particularly susceptible to NECMs due to their long half-lives and nucleophilic disordered tails that undergo extensive regulatory modifications; however, histone NECMs remain poorly understood. Here we perform a detailed analysis of histone glycation in vitro and in vivo and find it has global ramifications on histone enzymatic PTMs, the assembly and stability of nucleosomes, and chromatin architecture. Importantly, we identify a physiologic regulation mechanism, the enzyme DJ-1, which functions as a potent histone deglycase. Finally, we detect intense histone glycation and DJ-1 overexpression in breast cancer tumors. Collectively, our results suggest an additional mechanism for cellular metabolic damage through epigenetic perturbation, with implications in pathogenesis.


Assuntos
Neoplasias da Mama/genética , Epigênese Genética , Produtos Finais de Glicação Avançada/genética , Histonas/metabolismo , Nucleossomos/química , Proteína Desglicase DJ-1/genética , Processamento de Proteína Pós-Traducional , Acetilação/efeitos dos fármacos , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação/efeitos dos fármacos , Xenoenxertos , Histonas/genética , Humanos , Camundongos , Nucleossomos/metabolismo , Proteína Desglicase DJ-1/metabolismo , Aldeído Pirúvico/farmacologia , Microambiente Tumoral/efeitos dos fármacos
7.
Biochemistry ; 58(3): 171-176, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30585724

RESUMO

Higher order compaction of the eukaryotic genome is key to the regulation of all DNA-templated processes, including transcription. This tightly controlled process involves the formation of mononucleosomes, the fundamental unit of chromatin, packaged into higher order architectures in an H1 linker histone-dependent process. While much work has been done to delineate the precise mechanism of this event in vitro and in vivo, major gaps still exist, primarily due to a lack of molecular tools. Specifically, there has never been a successful purification and biochemical characterization of all human H1 variants. Here we present a robust method to purify H1 and illustrate its utility in the purification of all somatic variants and one germline variant. In addition, we performed a first ever side-by-side biochemical comparison, which revealed a gradient of nucleosome binding affinities and compaction capabilities. These data provide new insight into H1 redundancy and lay the groundwork for the mechanistic investigation of disease-driving mutations.


Assuntos
Histonas/isolamento & purificação , Engenharia de Proteínas/métodos , Proteínas Recombinantes/isolamento & purificação , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Histonas/química , Histonas/genética , Histonas/metabolismo , Humanos , Nuclease do Micrococo/metabolismo , Nucleossomos/metabolismo , Biblioteca de Peptídeos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína SUMO-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...